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An acoustic line source is placed in the neighbourhood of a circular cylinder. Acoustic 
streaming is generated in a Stokes shear-wave layer, at the surface of the cylinder, 
beyond which it persists. It is the streaming outside the Stokes layer, for large values 
of a streaming Reynolds number, that is the subject of the present paper. 

1. Introduction 
In  a recent article Lighthill (1978) has re-examined the phenomenon of acoustic 

streaming. He demonstrates, in particular, the fundamental principle that it is the 
attenuation of acoustic energy flux that makes momentum flux available to force the 
streaming motion. He identifies two such forms of attenuation. In  the first, 
attenuation takes place in the main body of the fluid, as for example in an ultrasonic 
beam, whilst in the second it takes place owing to fluid friction in the neighbourhood 
of a solid boundary. In this paper we are concerned with an example of the second 
type, as we consider the two-dimensional Streaming that arises when an acoustic line 
source is placed close to a circular cylinder. 

Studies of this kind originated with the work of Rayleigh (1884), and were 
continued inter alia by Schlichting (1932), Nyborg (1953) and Westervelt (1953). In  
some of these studies a solid body vibrates in a fluid at rest, rather than being itself 
at rest in an acoustic standing wave. As Lighthill (1978) points out the streaming 
in each case may be treated theoretically in the same way. The same treatment has 
been applied by Longuet-Higgins (1953) to the streaming that is induced when waves 
form on the surface of a liquid of finite depth. All of these earlier studies neglect the 
effect of the fluid’s inertia on the steady streaming. It was Stuart (1963) who pointed 
out that outside a Stokes shear layer close to the boundary the flow is characterized 
by a streaming Reynolds number R,, such that for R, 4 1 fluid inertia may be ignored 
whilst for R, B 1 the streaming flow has a double structure. Thus there is a boundary 
layer, of thickness O(a@) where a is a typical length, within which the streaming 
is relatively strong and outside which there is a weak potential flow. Riley (1967), 
reviewing this early work, showed that when R, = 0(1 )  the Naviel-Stokes equations 
for steady flow are required, and, in particular, that the Reynolds stresses make no 
direct contribution to the outer streaming, which is induced indirectly from the action 
of such stresses in the Stokes shear layer. In  subsequent work Davidson & Riley 
(1972) have carried out a theoretical and experimental study of the boundary layers 
and jets that form on, and in the neighbourhood of, a vibrating cylinder when R, B 1. 
An experimental study by Bertelsen (1974), also for R, B 1, concentrates on the flow 
in the boundary layer. Riley (1975), using higher-order boundary-layer theory, 
attempts to reconcile the measured boundary-layer profiles of Bertelsen with those 
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FIQURE 1.  The physical configuration and coordinate system. The source is located at S. 

predicted theoretically. Further such attempts have been made by Duck & Smith 
(1979) and Haddon & Riley (1979) who solve the Navier-Stokes equations in a 
bounded annular region for finite values of R,. 

All of the above studies possess a high degree of symmetry, namely about each of 
two perpendicular axes. Wang (1972), in a more asymmetric situation considers the 
streaming that is induced when an acoustic line source is placed close, and parallel, 
to a circular cylinder. He analyses the flow both in the Stokes layer and outside it, 
although he restricts his attention to  R, Q 1. But as Lighthill (1978) points out, all 
really noticeable acoustic streaming motions are associated with R, % 1. Wang 
(1982, 1984) has also considered the streaming induced when an acoustic source is 
placed close to a sphere or a plane boundary. In  the present paper we address 
ourselves to the configuration of Wang (1972), shown in figure 1, when R, is large. 

As we have already indicated the parameter R, is essentially a Reynolds number 
associated with the acoustic streaming motion outside the Stokes shear-wave layer. 
For the case under consideration it is defined as follows. If m is the strength of the 
acoustic source which has frequency w ,  and v is the kinematic viscosity of the fluid, 
then R, = m2/4n2a2uv, where a is the radius of the cylinder. A second parameter 
associated with the flows under consideration is e = m/2xwa, and e Q 1. The 
theoretical development of Riley (1967), which is also applicable here, is for e Q 1, 
R, = O(1). Since we particularly wish to concentrate on the case R, B 1 we note that 
the theory is formally valid in the limits e+O, R,+co, where the limits are taken 
in that order. For the flow outside the Stokes shear-wave layer Riley (1967) expands 
the dimensionless stream function as 

where m/2na, w - l  and a have been chosen as a typical velocity, time and length 
respectively; the coordinates ( r , @  are defined in figure 1. We now substitute (1 .1)  
into the unsteady Naviel-Stokes equations for incompressible flow. These equations 
will be appropriate for r 4 c / w  where c is the speed of sound in the fluid. At first order 
we have 

(1.2) 

where $os(r ,8)  represents the steady irrotational flow from a source in the neigh- 
bourhood of a circular cylinder. This inviscid solution yields a velocity of slip Us(@ 

$0 = $o&, 4 cost, 



Streaming from a cylinder due to an acoustic source 321 

at the surface r = 1, which is adjusted in the Stokes shear layer. If the term O(E) in 
(1.1 ) is decomposed as 

= $.‘l”)(r,e,t;Rs)+$-IS)(r,e; R,), 

then Riley shows that it is only when the equation for is considered that the 
equation for $?) emerges. That equation is the full Navier-Stokes equation for steady 
flow at Reynolds number R,. Matching with the solution in the Stokes shear layer 
shows that a$?)/ar = -tU,dU,/de at r = 1. This latter result was essentially noted 
by Rayleigh (1884). 

It is the full Navier-Stokes equations that are our starting point for the discussion 
of the acoustic streaming in $2. We make the boundary-layer approximation 
appropriate to R, @ 1, and consider the solution within, and beyond, a boundary 
layer of thickness O(R2). The flow is symmetrical about the lines B = 0, x ,  and the 
boundary layers that form above and below this line of symmetry collide so that 
jet-like flows erupt from r = 1,e = 0, x .  These jets have different strengths, and make 
a contribution to the force balance that tends to repel the cylinder from the acoustic 
source. This asymmetrical feature of the outer flow is further emphasized, in the flow 
beyond the boundary layer, by the streamline pattern of the mean flow. 

2. The solution for R, 9 1 

With an acoustic line source placed at a distance R from the centre of a circular 
cylinder, as in figure 1, the slip velocity that is induced at the surface of the cylinder, 
if the fluid is assumed to be inviscid, may be written as 

(2.1) U,(R, e, t )  = UJR, e) Cost, 

where 

The adjustment that is necessary to satisfy the no-slip condition at the surface of 
the cylinder takes place in a Stokes layer of thickness O(e/d,). Furthermore the 
Reynolds stresses that act within the Stokes layer induce a steady motion, or 
streaming O(s). The details of the flow structure within the Stokes layer are 
well-documented, as for example by Stuart (1963). The atreaming motion persists to 
the edge of the Stokes layer where it takes the value mJR, 8) with 

and use has been made of (2.2). This ‘edge’ velocity is, in turn, responsible for driving 
the streaming motion outside the Stokes layer. It has been shown by Riley (1967) that, 
for a situation of the type under consideration, the Reynolds stresses do not directly 
contribute to this outer steady streaming which is governed by the steady Naviep 
Stokes equations with R, as Reynolds number. Thus we have, with (r,B) as the 
cylindrical polar coordinates of figure 1, and (u, v) the corresponding components of 
velocity, 
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where V2 = az/ar2 + r-la/ar+ r-2i32/a02, and the velocity components are related 
to by u = a$f)/ar, rv = -a$f)/af?. The boundary conditions require that 
(u, v,p)+O as r+ m and that u = u,, v = 0 at r = 1. The latter conditions are 
effectively a matching condition between the outer flow and the Stokes layers. 

For R, S 1 Wang (1972) has addressed the problem of this outer streaming. Here 
we concentrate on the situation for R, % 1, and we fhd  it appropriate to expand the 
solution of (2.4)-(2.6) as 

(2.7) I u=u1+Rs2u2+..., -1 

-1 v = R,2vl+. . ., 

p = R,2p2+. . . . . -1 

The expansions (2.7) reflect the boundary-layer nature of the outer streaming, for 
which it is appropriate to introduce the boundary-layer coordinate 

r = l+R;?ij. (2.8) 

2.1. The outer boundary Zayer at first order 
Introducing (2.7), (2.8) into (2.4) to (2.6) gives the following boundary-layer problem 
at leading order : 

(2.9a) -+:-, au1 3% - 0 
ae ay 

aul aul - a2ul ul-+v ---, ae 1 ai j  ag 
with 

I vl =0,  u1 =we on i j = O ,  

u p 0  as &!-too. 

(2.9b) 

(2.10) 

With u, given by (2.3) the solution of (2.9), (2.10) has to be completed using numerical 
methods. The method that we have adopted is one that is described in detail by 
Davidson & Riley (1972), for a similar problem to that under consideration here. For 
the parabolic equation (2.9b) the numerical solution must commence at a stagnation 
point of attachment of the outer flow. Such stagnation points are located at r = 1,  
0 = +e,, where 0, is determined from u,(R,8,) = 0. The value of 0, = 8,(R) so 
determined is shown in figure 2. For 6 > Bs, where u, > 0, we introduce into (2.9) 
the variable 8 = 8 - 0 whilst for 8 < 8,, where now u, < 0, we introduce the variables 
6 = B,-8, .iil = -ul, in order to complete the numerical solution which is, of course, 
symmetrical about the line 0 = 0. A feature of the solution is that the momentum 
flux in the boundary layer is non-zero as 8+x-Os,  and as 6+8,. The momentum 
flux is given by 

S' 

00 

M(0)  = u!dij, (2.11) 
0 

and we define Ml = M(O), M2 = M ( R ) .  The ratio M J M ,  is shown in figure 2 for 
various values of R. Figure 2 clearly demonstrates the asymmetry, about 8 = in, of 
the flow. As the source location approaches the cylinder the stagnation points of 
attachment associated with the outer steady streaming approach 8 = 0, and the 
momentum flux ratio increases dramatically. Owing to symmetry there will be 
boundary-layer collisions at 0 = 0, x ,  with jets emerging along those directions. 
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RQURE 2. The stagnation point of attachment e,, and jet momentum flux ratio MI/& aa functions 
of R. In each carie the broken line represents the limit ~EI R+ ca. 

Lighthill (1978) has emphasized that such jets are a characteristic feature of acoustic 
streaming whether by attenuation of acoustic energy flux in the main body of the 
fluid or, as in the present ctwe, by friction in the neighbourhood of a solid boundary. 

For the potential-flow problem there is a force of attraction between the sour-w 
and the cylinder. Although this will dominate in the present case we note that the 
flux of momentum in the jets across a large contour which contains the cylinder makes 
a contribution E ~ ( M ~  -ill2)/@ to a repulsive force. This is unaffected by the inviscid 
outer flow at o(E/%) * that we now consider. 

2.2. The inviecid jlow beyond the boundary layer 
Beyond the boundary layer of the outer flow that has been discussed above, the flow 
velocities are O ( E / ~ ) ,  the flow behaves as if the fluid were inviscid and the fluid motion 
is induced by entrainment into the boundary layer, and into the jets that form along 
B = 0, R. When the entrainment velocities are known the outer inviscid flow is that 
due to a given source distribution along B = 0, IC for r > 1 and r = 1 , O  < 0 < 2n, and 
may be easily calculated using complex-variable methods. 

The entrainment velocity vla0 = vl(g = 00) is obtained during the course of the 
boundary-layer calculation, and is shown in figure 3 for various values of R. Consider 
next entrainment into the jets. In  the course of their experimental programme 
Davidson t Riley (1972) observed, in a not dissimilar investigation to the present 
one, that the jet profile had achieved a similarity form within one cylinder diameter 
from the point at which the jet is formed. The similarity solution proposed by Bickley 
(1937) for the plane jet may be expressed as 

$p) = {9N(x + x,)}i tanh 7 ,  I 
1 (2.12) 
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FIGURE 3. The entrainment velocity into the boundary layer for various values ofR. The stagnation 
point 6, is denoted in each case thus +. 

where 2N is the invariant momentum flux in the jet, (2, g) are rectangular coordinates 
with x measured along the line 0 = 0, and the constant xo may be interpreted as a 
virtual origin for the similarity solution. An expression analogous to (2.12) describes 
the jet flow along t9 = A. From (2.12) we find that along the jet 

Wla, = - ( + N ) f ( x + x 0 ) f .  (2.13) 

The constants N and xo remain to be determined. In the boundary-layer collision 
region Davidson t Riley (1972) have argued, as have Stewartson (1958) and Lyne 
(1971) in similar situations but different physical contexts, that the flow is essentially 
inviscid, and that the velocity profiles a t  the end of each boundary layer are convected 
around to emerge essentially unchanged. In that case, for the jet along 0 = 0 we have 
N = M l ,  and along 6 = x ,  N = M2. With only the two free parameters, N and xo, it 
is not possible to describe the flow in the jets completely for 1x1 > 1.  To fix xo we may, 
for example, insist on continuity of mass flow from the boundary layers to the jet, 
with a discontinuity in wlm, or we may accept a discontinuity in mass flow by taking 
wla, to be continuous. The calculations that we have carried out show only small 
differences in the solutions between either of these choices ; for the results presented 
below we have chosen xo by equating the mass flux in the jet at x = 1 with that in 
the boundary layers impinging at t9 = 0. A similar choice has been made for the jet 
along t9 = x .  

We are now in a position to determine the solution outside the outer boundary 
layer. First we transform the plane z = reie = x+iy to the complex 2-plane, where 

2 = z + z - l =  X+iY,  (2.14) 

so that the circle T = 1 is transformed to the slit 1x1 < 2, Y = 0 and the axis 1x1 > 1, 
y = 0 to the slit 1x1 > 2, Y = 0. The velocity components with which we are 
concerned are denoted in this transformed plane by (R$ U, Rb V,) . The Source strength 
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FIGURE 4. The outer-flow mean streamlines for R = 1.5. The streamlines are plotted at equal 
intervals 8Y = &(!PI- Y2) where Yl is the value of !P at x = 3.0, y = 0.1 and Y2 the value at 
(-3.0, 0.1). 

along the axis Y = 0 is given by q(X)  = 2V;(X,O) so that the stream function !P 
associated with (U, ,  6 )  may be written as 

and we have (xz - 4)t - x 
(X2-4fl 

, x < - 2 ,  

(2.15) 

(2.16) 

(xz - 4)f+ x 
(xz-4)1 

, x > 2 .  

The mean streamlines for the outer inviscid flow, calculated from Y(X ,  Y) = constant, 
are shown in figure 4 for R = 1.5. The highly asymmetric nature of the flow is made 
evident from this streamline pattern which reflects the higher entrainment velocities 
that are to be found, both in the boundary layer and the jet, on the source-side of 
the cylinder. 

3. Conclusions 
In  this paper we have calculated, at leading order, the acoustic streaming that is 

induced when an acoustic line source is placed in the neighbourhood of, and parallel 
to, a circular cylinder, for values of the streaming Reynolds number R, % 1. From 
the asymmetric nature of the steady jet-like flows which erupt from the surface of the 
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cylinder we deduce that for large R, there is a contribution to the force balance, from 
the acoustic streaming, that tends to repel the cylinder from the source. The 
streamline pattern of the outer steady flow further emphasizes the asymmetry of the 
streaming. 
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